IMPORTANT QUESTIONS

- Q1. If xy = 180 and HCF (xy) = 3, find the LCM(xy)
 - HCF x LCM = PRODUCT OF NUMBERS

LCM = PRODUCT / HCF = 180 / 3 = 60

Q2. Three bells ring at an interval of 4,7 and 14 minutes. All three bell rang at 6 am. When will the three bells will ring together next?

$$4 = 2 \times 2; 7 = 1 \times 7; 14 = 2 \times 7$$

LCM(4,7 &14) = 2 x 2 x7 = 28

Hence, the bell will ring together again at 6.28am

IMPORTANT QUESTIONS

Q3. The HCF, of two numbers a and b, is 5 and their LCM is 200. Find the product ab?

HCF x LCM = PRODUCT OF NUMBERS

Product of Nos = 5 x 200 = 1000

Q4. Three bells red, green and yellow flash at intervals of 80, 90, 110 seconds. All three flash together at 8.00 am. When will these bulbs flash together again?

$$80 = 2^4 \times 5$$
; $90 = 2 \times 3^2 \times 5$; $110 = 2 \times 5 \times 11$

 $LCM(80,90,110) = 2^4 \times 3^2 \times 5 \times 11 = 7920$ seconds

= 7920/60= 132 min = 2 hour 12 min

Three bulbs will flash together again at 10.12 am

Q5. PROVE THAT V5 IS IRRATIONAL

<u>PROOF</u>

- **1.** Let us assume that $\sqrt{5}$ is rational
- 2. Hence $\sqrt{5} = a/b$, where a & b (b≠0) are coprime numbers.
- 3. Squaring on both sides, we get $5 = a^2 / b^2$

$$a^2 = 5 b^2$$
(1)

therefore, we can write a =5c for some integer c.

- 4. Substituting for a, we get $25c^2 = 5b^{2}$, that is, $b^2 = 5c^2$(2)
- 5. From equation (1) & (2), a & b have at least 5 as a common factor, by theorem 1.3
- 6. This contradicts our assumption that √5 is a rational number
- 7. Hence V5 is irrational

Q6. Write whether (2 V45 + 3 V20)/ 2 V5 on simplification gives a rational number or an irrational number?

 $(2\sqrt{45} + 3\sqrt{20})/2\sqrt{5} = (2 \times \sqrt{9} \times 5) +$

 $3\sqrt{4x5} = (2x3\sqrt{5} + 3x2x\sqrt{5})/2\sqrt{5}$

= $(6 \sqrt{5} + 6 \sqrt{5})/2 \sqrt{5} = 12 \sqrt{5}/2 \sqrt{5} = 6$, which is a rational number

Q7. Can two numbers have 16 as their HCF and 360 as their LCM?. Give reasons

No. Since HCF of two numbers, is a factor of their LCM. Here, HCF 16 is not a factor of LCM 380.

Q8. The decimal expression of 15/400 will terminate after how many decimal places?. $15/400 = (3x5)/(2^4 \times 5^2) = 3x5x 5^2/(2^4 \times 5^4)$ $= 15x25/10^4 = 375/10000 = 0.0375$ Hence, it will terminate after 4 decimal places. Q9. The decimal expression of 14587/1250 will terminate after how many decimal places?. $14587/1250 = 14587/(2x 5^4)$ $= 14587 \times 2^3 / (2^4 \times 5^4)$ $= 14587 \text{ x8/(10^4)} = 116696/10000$ Hence, it will terminate after 4 decimal places.

Q10. If two positive integers a and b are written as $a = x^3 y^2$ and $b = x y^3$; x and y are prime numbers. Find LCM(a, b)? $a = x^3 y^2$ and $b = x y^3$

LCM = greatest power of numbers LCM(a, b) = $x^3 y^3$

- Q11. what is the HCF of smallest composite number and the smallest prime number?
 - The smallest composite number = $4 = 2x^2$ The smallest prime number = 2HCF(4,2) = 2

Q12. If LCM(x,18) = 36 and HCF(x,18)=2, then find x?

- LCM x HCF = product of numbers.
- $36 \times 2 = 18 \times 10^{-10}$

$$x = 36x^2/18 = 2x^2 = 4$$

Q13. The decimal expression of 27/ 2³ 5⁴ 3² will terminate after how many decimal places?.

$$27/2^{3}5^{4}3^{2} = 3^{3}/2^{3}5^{4}3^{2} = 3^{1} \times 2/2^{4}5^{4}$$

= 6/10⁴= 0.0006

Hence, it will terminate after 4 decimal places.

Q14. The decimal expression of 6/1250 will terminate after how many decimal places?. $6/1250 = 2x3/2x 5^4 = 2^4 x3/2^4 x 5^4$ $= 16x3/10^4 = 48/10000 = 0.0048$

Hence, it will terminate after 4 decimal places.

- Q15. Find the HCF of 612 and 1314 using prime factorisation.
 - $612 = 2x2x3x3x17 = 2^2x3^2x17;$

= 18

- $1314 = 2x3x3x73 = 2x3^2x17$
- $HCF(612,1314) = 2x3^2$

Q16. PROVE THAT 3-2V2 IS IRRATIONAL, GIVEN THAT V2 IS IRRATIONAL

<u>PROOF</u>

- 1. Let us assume that $3-2\sqrt{2}$ is rational
- Hence 3-2√2 = a/b, where a & b (b≠0) are co-prime numbers

2√2 = **3**- a/b

√2 = (3b-a)/2b

- Since a and b are integers, we get (3b-a)/2b is rational and so, √2 is rational.
- 4. This contradicts the fact that $\sqrt{2}$ is irrational
- 5. This contradiction has arisen because of our incorrect assumption that 3-21/2 is rational
- 6. Hence $3-2\sqrt{2}$ is irrational

Q17. Explain why 3x5x7+7 is a composite number.

3x5x7+7 = 7(3x5x1+1) = 7x16, which has more than 2 factors. Hence, 3x5x7+7 is a composite number.

- Q18. Find the largest number which divides 77 and 85 leaving remainder 7 and 5 respectively.
 - The required largest number is the HCF of

70 = 2x5x7; 80 = 2x2x2x2x5

HCF(70,80) = 2x5 = 10

Q19. Find the largest number which divides 285 and 1249 leaving remainder 9 and 7 respectively.

The required largest number is the HCF of

(285-7) and (1249-7)

276= 2x2x3x23 ; 1242 = 2x3x3x3x23

HCF(276,1242) = 2x3x23=138

Q20. Find the largest positive integer that will divide 398, 436, 542 leaving remainders 7,11 and 15 respectively

391=17x23; 425=5x5x17; 527=17x31

HCF(391,425,527) =17

Q21. Find the largest number which divides 615 and 963 leaving remainder 6 in each case. The required largest number is the HCF of (615-6) and (963-6) 609 = 3x7x29; 957 = 3x11x29HCF(609,957) = 3x29 = 87Q22. If $a = 2^3 x^3$, $b = 2x^3$, $c = 3^n x^5$ and LCM(a,b,c)= $2^3x 3^2x5$, then find n LCM(a,b,c) = greatest power $LCM(a,b,c) = 2^{3}x 3^{n}x5 = 2^{3}x 3^{2}x5$ Therefore n=2

Q23. Find the smallest number by which V8 should be multiplied to get a rational number?

8= 2x2x2 ; if we multiply 8 with 2, we will get 16, which is a perfect square

$$\sqrt{8} \times \sqrt{2} = \sqrt{16} = 4$$

Hence the smallest number is $\sqrt{2}$

Q24. If $504 = 2^m x 3^n x 7^p$, then find the value of

m-n+p?

 $504=2^{3}x \ 3^{2}x7^{1}=2^{m}x \ 3^{n}x7^{p}$

Therefore m=3, n=2,p=1 ; m-n+p=3-2+1=2

Q25. Write the smallest number which is divisible by both 306 and 657? 306= 2x3x3x17 ; 657 = 3x3x73 LCM(306,657) =Highest powers = 2x3x3x17x73= 22338

Q26. If p and q are prime numbers, then find HCF of p³q² and p²q

HCF = SMALLEST COMMON POWER HCF(p^3q^2 , p^2q)= p^2q Q27. Find the least number that is divisible by first five even numbers.

The first 5 even numbers are 2,4,6,8,10

2=2; 4=2x2; 6=2x3; 8=2x2x2; 10 = 2x5

LCM(2,4,6,8,10) = 2x2x2x3x5 = 120

Q28. The total number of factors of a prime number is

= 2(the number itself and one)

Q29. The sum of exponents of prime factors in te prime factorisation of 196 is

 $196 = 2x2x7x7 = 2^2 \times 7^2$ sum of exponents =2+2=4

Q30. The exponent of 2 in the prime factorisation of 144 is

- 144= 2x2x2x2x3x3= 2⁴ x 3²; Exponent of 2 =4
- Q33. $(2+\sqrt{5})/3$ isnumber (ans = irrational)
- Q34. The decimal form of 129/ 2²5⁷ 7⁵.....

= non-terminating non-repeating, since 7⁵ is there in the denominator

Q35. The product of a rational number and irrational number(irrational)

^{Q36.} The sum of a rational number and irrational number(irrational)

Q37. The product of two different irrational numbers is always (a) Rational (b) irrational (c) both of the above (d) none of the above Reason : $\sqrt{2} \times \sqrt{8} = \sqrt{16} = 4$ (rational) $\sqrt{2} \times \sqrt{3} = \sqrt{6}$ (irrational) Q38. If b=3, then any integer can be expressed as (a) 3q, 3q+1, 3q+2; (b) 3q; © none of the above, (d)3q+1

Q39. The product of three consecutive positive is divisible by (a) 4 (b) 6 © no common factor(d) only 1

- 1x2x3 = 6/6=1
- 2x3x4 = 24/6 = 4
- 3x4x5=60/6= 10
- 4x5x6 = 120/6 = 20
- Q40. The set A =0,1,2,3,4,5,.... Represents the set of WHOLE numbers
- Q41. For some integer p, every even integer is of the form (a) 2p+1 (b) 2p[©] p+1(d) p
- Q42. For some integer p, every odd integer is of the form (a) 2p+1 (b) 2p© p+1(d) p

Q43. The product of two consecutive natural numbers is always (a) Prime number (b) even number (c) odd number (d) even or odd

1 x 2 = 2; 2x3=6; 3x4 = 12; 4x5 = 20; 5x6 = 30